# WHY NOT TRY THE WILKINSON COUTTS FITNESS-FOR-PURPOSE (FFP) EVALUATION CHALLENGE?



As trainers in FFP subjects (including API RP 579) we are interesed in the effectiveness and accuracy of FFP evaluation techniques. We would therefore like to invite people interested in this subject to have a go at using their evaluation skills to predict the failure performance of a damaged vessel.

#### WHAT IS THE CONDITION OF THE VESSEL?

The vessel is shown below. We have built various defects into it; the vessel design data and information about the defects are described in this factsheet, in as much technical detail as possible.



#### WHAT WILL HAPPEN TO THIS VESSEL?

We will shortly be having the vessel tested to destruction using a hydrotest. We will then document and record the failure pressure and the location and mode of failure.

#### HOW DO I TAKE PART IN THE CHALLENGE?

The objective of the challenge is simply to predict, using the information provided on this factsheet:

- The pressure at which the vessel bursts
- The location and plane of the failure

You may do the assessment using whatever techniques you prefer. Once you have completed your assessment then simply send us your answer to the two questions above, and an indication of the assessment method you used to arrive at your answer.

#### WHEN DO WILKINSON COUTTS RELEASE THE RESULTS?

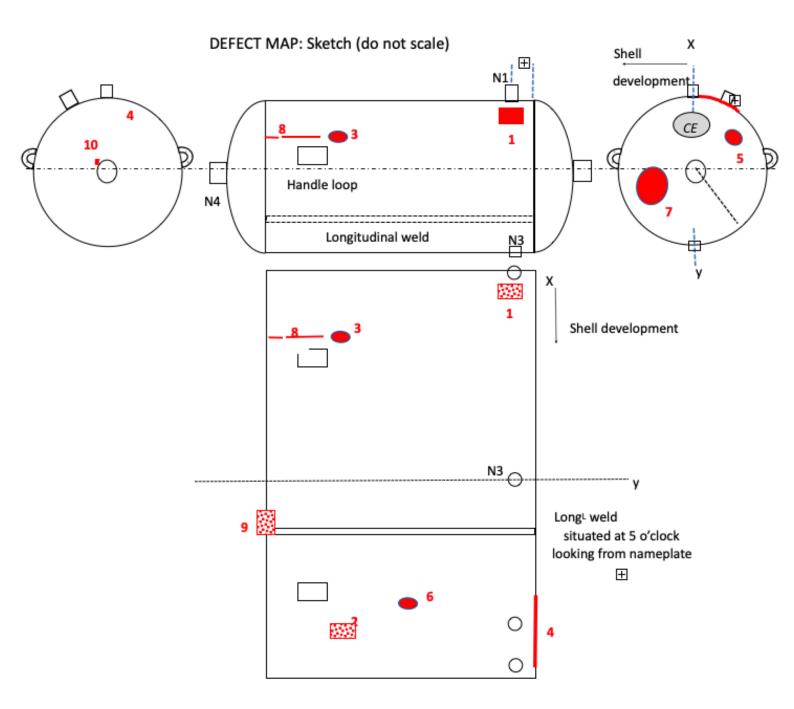
We will not publicise individual answers. Once everyone who wishes to has had a try then we will release details of the results of the destructive test in a factsheet. We estimate this will be in early November

The 'winner' be the entrant who most closely predicts the burst pressure and the location and plane of the failure. We will be pleased to publicise details of the winner, and their FFP method on our website / social media sites if they give us permission.

#### HOW DO I ENTER?

Please send your entries ,or any technical queries you have about the vessel to paul@wilkinsoncoutts. com.

#### IS THERE A PRIZE?


All entrants will be entitled to a free copy of our new book 'The plant inspector's guidebook' to be published by Wilkinson Coutts in late October.

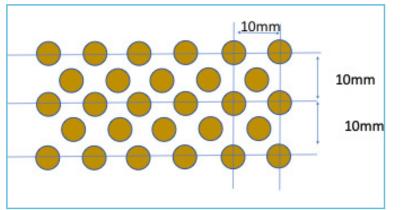
The winner of the challenge may nominate a delegate to attenda Wilkinson Coutts Training course (ASME-cert, API cert etc) free of charge (value  $\pounds$ 1700- $\pounds$ 2500)



| VESSEL DATA                             |                                                                                                                |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| OD                                      | 290mm                                                                                                          |  |  |
| Shell Thickness Nominal                 | 2.5mm                                                                                                          |  |  |
| Head Thickness Nominal                  | 2.5mm                                                                                                          |  |  |
| Stated corrosion allowance              | 0                                                                                                              |  |  |
| Shell length                            | 685mm                                                                                                          |  |  |
| Head shape                              | Torispherical                                                                                                  |  |  |
| Head depth                              | 70mm                                                                                                           |  |  |
| Nozzle N1, N2                           | Dia 30mm                                                                                                       |  |  |
| Drain nozzle N3                         | Dia 20mm                                                                                                       |  |  |
| Material                                | Low carbon steel EN 10207 P235S<br>Normalised                                                                  |  |  |
| Design code                             | EN 286-1 and CE marked                                                                                         |  |  |
| Date of manufacture                     | 2003                                                                                                           |  |  |
| Specified Minimum Yield strength (SMYS) | SMYS = 265 MPa at 20 degC<br>Proof strength Rp 0.2=171 MPa at 100 °C<br>Impact strength, %E and %A to EN 286-1 |  |  |
| Specified Tensile Strength              | 360-480 MPa at 20 degC                                                                                         |  |  |
| MAWP                                    | 11 barG                                                                                                        |  |  |
| PRV set pressure                        | 7 barG                                                                                                         |  |  |
| MDMT                                    | -20/+150 degC                                                                                                  |  |  |
| Joint efficiency E                      | 1.0                                                                                                            |  |  |
| Volume                                  | 50 litres                                                                                                      |  |  |







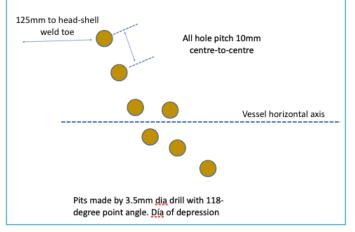

| DEFECT DATA   |                                                 |                                                                                                                          |                      |
|---------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|
| DEFECT NUMBER | ТҮРЕ                                            | SEVERITY /<br>INFORMATION                                                                                                | REFERENCE            |
| 1             | Pitting array                                   | Array of 28 depressions<br>3.5mm dia at surface                                                                          | See photo / sketch 1 |
| 2             | Pitting                                         | Area of pitting 3.5mm dia                                                                                                | See photo/sketch 2   |
| 3             | Hammer dent                                     | Dent 2.5mm deep<br>smooth-edged                                                                                          | See Photo 3          |
| 4             | Weld grinding                                   | Linear defect 110mm long<br>x 2mm wide. Max depth<br>1.5mm for 20cm in length.<br>Remainder is 1.0mm deep                | See photo 4          |
| 5             | Head hammer dent                                | Elliptical dent 40 x 25mm<br>max 3mm deep.<br>Smooth- edged.                                                             | See photo 4,5        |
| 6             | Local wall thinning: shell                      | Thinning 10mm long 1.0<br>max depth. Smooth- edged                                                                       | See Photo 6          |
| 7             | Head wall thinning<br>(nameplate end)           | Elliptical shape: major axis<br>90mm, minor axis 50mm.<br>Maximum depth 0.5mm                                            | See Photo 7          |
| 8             | Grinding marks on shell                         | Marks 30mm and 60mm<br>long. Max depth 0.7mm<br>and groove radius 1mm                                                    | See sketch 8         |
| 9             | Pitting on tee-weld cap                         | 4 pits dia 4.5mm, each<br>3mm deep on 3mm high<br>weld reinforcement                                                     | See photo 9          |
| 10            | Linear defect (grind mark)<br>on nozzle N4 weld | Undercut is 90 degrees of<br>arc, max 0.5mm deep into<br>shell and 1.0mm deep into<br>weld metal. Groove radius<br>1.5mm | See photo 10         |



### **PHOTO 1: PITTING ARRAY**






Pits made by 3.5mm dia drill with 118-degree point angle. Día of depression at surface = 3.5mm

www.wilkinsoncoutts.com



### **PHOTO 2: PITTING ARRAY**







### **PHOTO 3: DENT**



Dent size 45mm x 20mm x 2.5mm deep. Smooth edges



## PHOTO 4,5: WELD GRINDING MARK (4) AND HEAD DENT (5)





### PHOTO 6: LOCAL WALL THINNING



www.wilkinsoncoutts.com



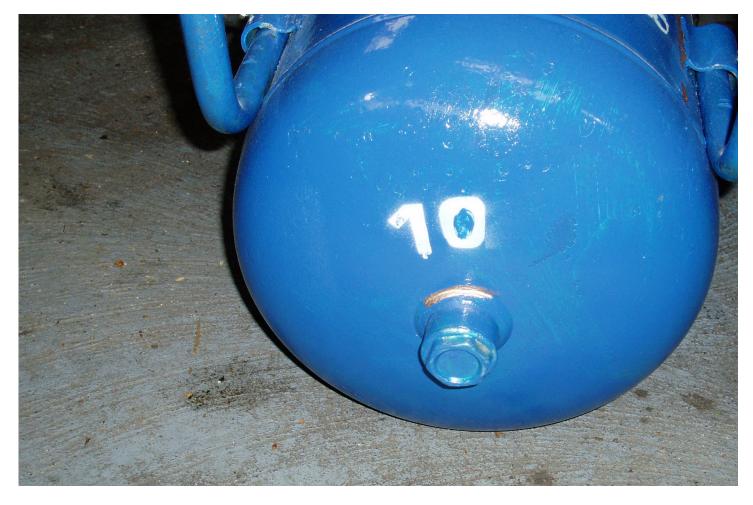
## PHOTO 7: HEAD WALL THINNING (NAMEPLATE END)





### **PHOTO 8: SHELL GRINDING MARKS**






## **PHOTO 9: WELD CAP PITTING**





## PHOTO 10: NOZZLE N4 WELD GRIND DEFECT

